TECHNICAL FEASIBILITY REPORT : – IPGCL, 2 MW ROOFTOP SOLAR PV PROJECT;

Developed By: Oakridge Energy Pvt. Ltd., Delhi (India)

PREPARED BY :

SOLELTHERM TECHNIK OPC PVT. LTD., Bangalore (India),

E-mail: kontakt@soleItherm-technik.in, Contact No. – (+91)9741909069

TABLE OF CONTENTS

1.	INTRODUCTION	. 3
2.	TECHNICAL FEASIBILITY ASSESSMENT	. 4
3.	ECONOMIC FEASIBILITY ASSESSMENT	. 9
4.	CO2 EMISSIONS ANALYSIS	. 9
5.	PROJECT MONITORING	11
6.	SOCIAL & ECONOMIC IMPACTS	12
7.	SUMMARY & CONCLUSION	13
8.	ANNEXURE I – DESIGN BY 'PV SYST'	13

1. INTRODUCTION

a. The Government of India is actively promoting the setting up of the Solar Power. The Prime Minister has set the ambitious target of Solar power generation capacity of 100 GW by 2022. The State Governments are also working with the Centre to encourage the adoption of Solar power through various policy interventions.

The Renewable Purchase Obligation (RPO) of the Government of Delhi is targeted at 10% of the total power procured (from all sources) by 2022. In pursuance of this target, the Govt of Delhi is encouraging Solar power by installation of PV power plants on the rooftops of various institutions like schools & residential societies.

- b. Indraprastha Power Generation Company Ltd. (IPGCL) is an entity of Government of Delhi. IPGCL has invited bids from the qualified and capable vendors to set up rooftop Solar PV projects (RTSPV) over the roofs of various schools in Delhi. 'M/s Oakridge Energy Private Limited' (hereinafter called 'Oakridge') has won one such tender for setting up RTSPV projects aggregating to 2 MW.
- c. M/s Oakridge would set up Solar PV projects over the rooftop of identified schools in Delhi of varying capacity (as per the roof area available, allowable capacity etc.) with cumulative capacity addition of 2 MW. These RTSPV projects would be set up under the 'Net Metering' policy of the Government of Delhi where the end client (Schools) would be charged only for the net electricity consumed (electricity imported from the grid minus Solar power exported into the grid)

2. TECHNICAL FEASIBILITY ASSESSMENT

- a. Electricity yield calculation has been carried out for a typical site location (rooftop of school) at Delhi. The rooftop Solar PV capacity is assumed to be 50 KWp. The assumptions on shadow loss and cleanliness of the modules (soiling loss) has been made to have the least loss given proper upkeep of the PV plant during operation & maintenance stage. A Performance Ratio (PR) of 0.81 is assessed with the given input conditions.
- **b.** The various module parameters as input are as below:

Item	Value	Unit
NOCT	45	°C
Temperature Coefficient for Pmax	0.39%	per °C
Annual Degradation	3%	per year for 0-1 year
Annual Degradation	0.65%	per year for 2-25 year

c. The losses as assessed by the PV module datasheet and the grid-tie Inverter data sheet are as given below:

Other Losses	
PV loss during operation	3.00%
Soiling loss	1.00%
Manufacturer Tolerance	0.00%
Inverter loss during operation	1.50%
Loss in DC cables	1.00%
Loss in transformer	0.00%
Loss in AC transmission	0.50%

d. The monthly specific yield output (kWh/kWp) and monthly PR is calculated for a South-facing tilt angle of 28deg and is as given below;

IPGCL 2 MW Rooftop Solar PV Project – Technical due diligence

Month	Days	Average Daily Solar Radiation (kWh/sq.m./day)	Day Time Average Temp. (°C)	Monthly Specific Yield (kWh/kW)	Monthly Performance Ratio
Jan	31	5.14	21.2	134.14773	0.84190
Feb	28	5.62	23.8	131.01634	0.83259
Mar	31	6.46	30.3	162.07527	0.80932
Apr	30	6.2	36.3	146.53977	0.78785
May	31	5.9	40.6	141.28240	0.77246
Jun	30	5.43	40	126.82362	0.77854
Jul	31	4.74	35.2	116.93554	0.79580
Aug	31	4.61	33.6	114.55104	0.80156
Sep	30	5.24	34	125.14388	0.79608
Oct	31	5.83	33	144.52255	0.79966
Nov	30	5.57	28.6	136.25486	0.81541
Dec	31	4.97	23.4	128.49771	0.83402

e. The PV Array-Inverter matching has been carried out with first principles and various input conditions are tabulated as below for the PV Module and the inverter:

PV MODULE - SUMERA 370W _p								
AMBIENT CONDITIONS & PLANT YIELD								
Item Value Unit								
Max. Ambient Temperature	40.6	°C						
Min. Ambient Temperature	21.2	°C						
PR as per Yield Analysis	81%							
Max. DC Loss Allowed in DC Cabling	1%							
	TERS							
Item Value Unit								
Module NOCT	45	°C						

Max. Cell Temperature	65.6	°C
Min. Cell Temperature	46.2	°C
Module Rated Peak Power at STC	370	Wp
Module Open Circuit Voltage - V _{OC}	48.5	V
Module Short Circuit Current - I _{SC}	9.84	А
Module Max Power Voltage - V _{MP}	40.0	V
Module Max Power Current - I _{MP}	9.26	А
Temp. Coeff. For Max. Power - Y_{MP}	-0.390%	%/ ⁰ C/V
Temp. Coeff, for Open Circuit Voltage - Y _{OC}	-0.280%	%/ ⁰ C/V
Temp. Coeff. For Short Circuit Current - Y _{SC}	0.057%	%/ ⁰ C/A

GRID-TIED INVERTER - HITACHI HIVERTER Si-50KPI								
Item	Value	Unit						
Absolute Max. DC Input Voltage	1000	V						
MPPT Window Lower DC Input Voltage	350	V						
MPPT Window Upper DC Input Voltage	950	V						
No. Of MPPT	3	Nos.						
Rated DC Voltage of Inverter	600	V						
Inverter Efficiency	98.5	%						
Max. Input DC Power (All MPPT's)	65	kW						
Max. DC Input Current / MPPT	30	А						

f. The PV module annual degradation would result in lower output year-on-year and it was calculated for each modular PV power plant of 50kWp installed capacity.

g. The PV array corrected parameters thus arrived as per the PV module data sheet are as below:

PV MODULES - TEMPERATURE CORRECTED PARAMETERS								
ltem	Value	Unit						
V_{OC} at T_{MAX}	42.99	V						
V_{OC} at T_{MIN}	45.62	V						
V_{MP} at T_{MAX}	33.67	V						
V_{MP} at T_{MIN}	36.69	V						
Isc at T _{MAX}	10.07	А						
I _{MP} at T _{MAX}	9.47	А						
Isc at T _{MIN}	9.96	А						
I _{MP} at T _{MIN}	9.37	А						

h. The array size thus worked out based on the Inverter-Array matching is as presented below:

DETAILS OF ARRAY SIZE						
Min. No. of Modules per String	12					
Max. No. of Modules per String	20					
Max. No. Strings/MPPT	2					
Max. No. of Strings / Inverter	6					

The optimum size of the PV array is worked out to be 17 PV modules per string and 2 strings per MPPT. For this arrangement, the array-inverter overall efficiency is maximum at the highest temperature corrected output. This is illustrated in the curve plotted below:

- i. Component description / Component assembly The key components of Module and Inverter are selected based on the tier-1 manufacturer. The module was selected from Sumera 370Wp from Vikram Solar and grid-tied inverter from Hitachi 50kW. The overall 2MW PV plant distributed at various site locations was modularised with each PV plant of capacity 50kWp.
- **j.** An independent check was also done with 'PV Syst' (a widely used industry software tool for PV system design). The results obtained from 'PV Syst' are attached as 'Annexure I' of this report. The results obtained from 'PV Syst' are in line with our technical due diligence carried out by the first principles.

3. ECONOMICAL FEASIBILITY ASSESSMENT

This has been separately carried out/got carried out by the project developer (M/s Oakridge Energy Private Ltd.) and as conveyed by them, the project is found to be economically viable. M/s Oakridge Energy Private Ltd. might be contacted for more details regarding the same.

4. CO₂ EMISSIONS ANALYSIS

a. The lifetime of the PV plant is designed to be 25 years. The savings of GHG emissions during this designed power producing period of the PV plant has been analyzed (with insolation data taken from NASA SSE Power database) and found to be as below for each of the 50kW_p modular PV plant:

Year	Annual Energy Yield (kWh)	Annual Specific Yield (kWh/kW)	Annual Performance Ratio	GHG Emmisions Offset (kgs of CO ₂)
1	80390	1608	0.80	69135
2	77978	1560	0.78	67061
3	77471	1549	0.78	66625
4	76967	1539	0.77	66192
5	76467	1529	0.77	65762
6	75970	1519	0.76	65334
7	75476	1510	0.76	64910
8	74986	1500	0.75	64488
9	74498	1490	0.75	64069
10	74014	1480	0.74	63652
11	73533	1471	0.74	63238
12	73055	1461	0.73	62827
13	72580	1452	0.73	62419
14	72108	1442	0.72	62013
15	71640	1433	0.72	61610
16	71174	1423	0.71	61210
17	70711	1414	0.71	60812
18	70252	1405	0.70	60417
19	69795	1396	0.70	60024
20	69341	1387	0.69	59634
21	68891	1378	0.69	59246
22	68443	1369	0.68	58861
23	67998	1360	0.68	58478
24	67556	1351	0.68	58098
25	67117	1342	0.67	57721

b. The similar calculation for savings of GHG emissions has been done with 'PV-GIS SARAH database' and the following result is obtained;

Years	Annual Energy Yield (kWh)	Annual Specific Yield (kWh/kW)	Annual Performance Ratio	GHG Emmisions Offset (kgs of CO ₂)
1	85976	1720	0.804	84256
2	83396	1668	0.780	81728
3	82854	1657	0.775	81197
4	82316	1646	0.770	80669
5	81781	1636	0.765	80145
6	81249	1625	0.760	79624
7	80721	1614	0.755	79107
8	80196	1604	0.750	78592
9	79675	1593	0.745	78081
10	79157	1583	0.740	77574
11	78643	1573	0.735	77070
12	78131	1563	0.731	76569
13	77624	1552	0.726	76071
14	77119	1542	0.721	75577
15	76618	1532	0.716	75085
16	76120	1522	0.712	74597
17	75625	1512	0.707	74112
18	75133	1503	0.703	73631
19	74645	1493	0.698	73152
20	74160	1483	0.693	72677
21	73678	1474	0.689	72204
22	73199	1464	0.684	71735
23	72723	1454	0.680	71269
24	72250	1445	0.676	70805
25	71781	1436	0.671	70345

c. As the result in section 4(a) above is more conservative (gives lesser amount of savings in GHG Emissions), we have considered the same (insolation based on NASA-SSE Power Database) for our report.

For the complete 2MW Solar PV project, this amounts to average saving of ~ 60 million MT of CO2 emissions.

5. PROJECT MONITORING

M/s Oakridge Energy Private Ltd. has a full team of engineers, procurement executives and project managers. The subject project of 2 MW is about to start. As informed by M/s Oakridge, the entire project of 2 MW would be managed internally with the team of project managers, engineers and other support staff. The project team would follow the well established principles of project managent (as explained in the latest version of the PMBOK issued by Project Management Institute (PMI), USA).

The project team would develop the baseline project schedule and the budget. The project progress would be measured and reported from the respective sites and the project would be monitored at site level and also at the head quarter. The key metric like SPI (Schedule Performance Index), CPI (Cost Performance Index) would be calculated, variance analysis (planned v/s actual) would be done and necessary actions taken to commission the projects within time and the budget. The project team would also separately plan and manage the following aspects of the sub projects under the ambit of the overall project management of 2 MW RTSPV project;

- a) Procurement management of key equipment such as the Solar PV modules and the inverters
- b) Procurement management of BoS (Balance of systems such as cables, ACDBs, earthing etc.) of RTSPV project
- c) Construction management of the civil and electrical work at the respective sites
- d) Risk management of the various sub projects under the 2 MW RTSPV project
- e) Safety management of the work at the respective sites

6. SOCIAL & ECONOMIC IMPACTS

The project would have positive and beneficial social and economic impacts as stated below;

a) Economic Impact - The project is economically viable as stated in Section 3 (based on the information provided by M/s Oakridge) of this report. Thus, this project would yield the required return on the investment to the investors in the project.

The project would also help the end clients (Schools) as their electricity bill would get reduced considerably due to significant part of their electricity consumption being met with the installed rooftop Solar PV plants.

b) Social Impact – The project would be beneficial environmentally as stated in Section 4 of this report.

The project would lead to direct employment of the supervisors and labor for construction and installation work. There is minimal maintenance required for the Solar PV projects. However, maintenance of these projects also would lead to a few jobs being created.

7. SUMMARY & CONCLUSION

As explained above, the project is technically viable. The key equipment (Solar PV modules, Solar PV Inverters) proposed to be used are from the approved vendor list of the 'Bureau of Indian Standards' (BIS), Government of India. The technical analysis giving the monthly yield (electricity produced) from the typical 50 KW_p RTSPV has been done based on the data sheet of the equipment of the said vendors only.

As stated in Section 4 of this report, the implementation of the project would lead to considerable reduction in the emission of greenhouse gases over the life time of the Solar PV plant (considered as 25 years). As stated in Section 3 of this report, a separate economic feasibility for the project has been carried out and the project is found to be economically viable. Also, as explained in Section 6 of this report, the project would also lead to other social and economic benefits in terms of the direct job creation and reduction in the monthly electricity expenditure for the end clients (schools).

In the next section we have attached the details of the design carried out using 'PV Syst' (Popular industry software for Solar PV system Design) to further validate our above analysis.

8. ANNEXURE I – DESIGN BY 'PV SYST'

The details of PV system design using widely used industry software package 'PV Syst' are given in the following pages;

PVSYST V6.63											16/12/19	Page 1/3
	sterr	n: Sin	nulatio	on p	barame	eters						
Project :	Del	hi Govt Sc	hools IPG	CL								
Geographical Sit	te		New D	elhi					Count	ry I	India	
Situation Time defined	as		Latit Legal T Alb	ude ime edo	28.58° N Longitud Time zone UT+5.5 Altitud 0.20			le 1 le 2	77.20° E 219 m			
Meteo data:			New D	elhi	Meteo	onorm 7	.1 (2	001-2010)) - Syr	theti	С	
Simulation vari	ant: Nev	v simulatio	on variant									
			Simulation of	date	16/12	/19 11h	49					
Simulation parar	neters											
Collector Plane	Orientation			Tilt	28°				Azimu	th 2	24°	
Models used			Transposi	tion	Perez	:			Diffus	se l	Perez, Meteo	onorm
Horizon			Free Hori	zon								
Near Shadings			No Shadi	ngs								
PV Array Characteristics PV module Custom parameters definition Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C Total area		Si-moi n (50°C)	no Ma Manufact In se Nb. modu Nominal (S U n Module a	IodelSOMERA VSturerVikram Solareries17 modulesbules5406STC)2000 kWpmpp606 Varea10490 m²		SM.72.370.03.04 (Grand) r Limited In parallel 3 Unit Nom. Power 3 At operating cond. 1 I mpp 2 Cell area 9		318 strings 370 Wp 1806 kWp (5 2981 A 9474 m²	0°C)			
Inverter Custom param Characteristics Inverter pack	eters definitio	n Oj	Manufact Derating Volt Nb. of inver	odel urer age ters	Si- 50 HITA(250-9 40 un	I K CHI 60 V its	Max	Unit Non . power (Tota	n. Powe =>25°0 al Powe	er (C) (er 2	50 kWac 55 kWac 2000 kWac	
PV Array loss fac	ctors tor			net)	20.03	N/m²k		I	by (min	-1) (F	$10 M/m^{2}k'$	m/s
Wiring Ohmic Loss LID - Light Induced Degradation Module Quality Loss Module Mismatch Losses Incidence effect (IAM): User defined I/		n fined IAM pr	OC (CO Global array ofile	res.	s. 3.4 mOhm			Loss Loss Loss Loss	Fractic Fractic Fractic Fractic Fractic	on 2 on 2 on -	1.5 % at STC 2.5 % -0.3 % 1.0 % at MPI	ni/s C
0°	20°	40°	60°	7	70°	75°		80°		85°	90°	
1.000	1.000	1.000	0.970	0.	900	0.830)	0.690	0	.450	0.000	

User's needs :

Unlimited load (grid)

PVSYST V6.63							16/12/19	Page 3/3
		Grid-Connec	ted Sv	stem: l	_oss dia	aram		
			j			9		
Project :		Delhi Govt Schools IPGCL						
Simulation varia	ant :	New simulation varia	nt					
Main system parameters PV Field Orientation		Syste	Grid-Connected 28° azimuth 24°					
PV modules		Nb of m	SOMER.	A VSM.72	2.370.03.04	(Grand) Pnom	370 Wp	
Inverter		ND. OF H	Model	Si- 50K		Pnom	50.0 kW ac	
Inverter pack		Nb.	of units	40.0		Pnom total	2000 kW ac	
User's needs		Unlimited loa	d (grid)					
		Loss dia	gram ov	ver the wi	hole year			
		1973 kWh/m²			Horizontal gl	lobal irradiation		
				+11.6%	Global incide	ent in coll. plane		
				-1.9%	IAM factor or	n global		
		2160 kWh/m² * 10490 m²	coll.		Effective irra	diance on collectors	5	
		efficiency at STC = 19.0	9%		PV conversio	n		
		4326 MWh		0.2%	Array nomina	al energy (at STC eff	ic.)	
			K	4-0.278				
					PV loss due	to temperature		
			(+)	0.3%	Module qualit	y loss		
				2.5%	LID - Light ind	duced degradation		
			() -1.	0%	Module array	mismatch loss		
			9-1.	2%	Ohmic wiring	loss		
		3640 MWh			Array virtual	energy at MPP		
			9-1.6	3%	Inverter Loss	during operation (effi	ciency)	
			(→0.09	6	Inverter Loss	over nominal inv. pov	ver	
			0.09	6	Inverter Loss	due to power thresho	ld	
				′o /o	Inverter Loss	over nominal inv. volt	lage Iold	
		3580 MWh	, 0.07	~	Available En	ergy at Inverter Out	out	
		3580 MWh			Energy injec	ted into grid		